
Research Status Report: Approximate Loop Unrolling

Marcelino
Rodriguez-Cancio

IRISA
263 Avenue Général Leclerc

35000 Rennes, France
marcelino.rodriguez-

cancio@irisa.fr

Benoit Combemale
INRIA/IRISA

263 Avenue Général Leclerc
35000 Rennes, France

benoit.combemale@irisa.fr

Benoit Baudry
INRIA/IRISA

263 Avenue Général Leclerc
35000 Rennes, France

benoit.baudry@inria.fr

ABSTRACT
This report describes the status of the research on Approx-
imate Loop Unrolling (A-Roll), an approximate loop
optimization. Approximate Loop Unrolling transforms
loops in a similar way Loop Unrolling does. However,
unlike its exact counterpart, A-Roll does not unrolls by
adding copies of the loop’s body. Instead, it adds interpo-
lations. We also describe our experimental implementation
of A-Roll in the Server Compiler (C2) of the Hotspot Java
Virtual Machine, as well as our current research roadmap.

Keywords
approximate computing; compiler optimizations; loop un-
rolling

1. INTRODUCTION
Several applications in computer science such as multi-

media, machine learning, numerical analysis and ubiquitous
computing can endure some degree of inexactitude. Indeed,
the data used by these applications can have many levels of
precision, allowing to trade-off accuracy for speed, energy
consumption or even financial costs. This is exploited ad-
hoc by developers using techniques specific to a domain, for
example by changing the bit rate in sound or varying the
time step length in simulations.

In this report we describe Approximate Loop Unrolling
(A-Roll) a domain-agnostic optimization to trade-off accu-
racy for speed, code size and potential energy savings.

The optimization works over a common pattern consist-
ing in a counted loop storing computations result’s into an
array being indexed by the loop’s counter variable. Counted
loops are those incrementing or decrementing a single vari-
able (namely the counter variable) and stopping when the
counter variable reaches certain value.

The subset of counted loops over which A-Roll can act
represents an important part of the total existing loops in
several projects. As an instance, in Apache Common Math

ACM ISBN 978-1-4503-2138-9.

DOI: 10.1145/1235

nearly 19% of all loops can potentially be optimized using
A-Roll.

2. APPROXIMATE UNROLLING
A-Roll works in a similar way to Loop Unrolling, but

instead of unrolling the loop by adding exact copies of the
loop’s body, it unrolls adding interpolations. The objective
of the optimization is to increase the loop’s speed while re-
ducing its size and the power consumption needed to obtain
a result. As example we will use the loop of listing 1, which
fills an array with a sine wave. The same loop, transformed
using A-Roll is shown in listing 2.

double stride = Math.PI * 2 / N;
for (int i = 0; i < N; i++) {

A[i] = Math.sin(i * stride);
}

Listing 1: Motivation example: A loop filling an
array with a sine wave

double stride = Math.PI * 2 / N;
for (int i = 0; i < N; i++) {

A[i] = Math.sin(i * stride);
A[++i] = A[i - 1];

}

Listing 2: Motivation example: The loop modified
using Approximate Unrolling

A-Roll has added a nearest neighbor interpolation at the
end of the loop, adding code that assigns the value of A[i]

to A[i + 1].

Figure 1: Sine wave generated by the motivation
examples of listing 1 and 2. The upper wave is gen-
erated by the original loop, while the lower wave is
generated by the degraded one.

The output of both loops is depicted in Figure 1. The
wave in the top is generated by the original loop, while the

10.1145/1235

wave at the bottom is generated using the interpolated one.
The interpolation selected is the most basic one and still
acceptable results are achieved in this case. The interpolated
wave introduces a harmonic distortion that is almost not
perceivable by human ears.

Constraints.
A-Roll works interpolating data. This enforces the no-

tion of distance between two data elements (in this case
two array slots). A-Roll assumes that two consecutive data
slots are logically close to each other in the application’s
data model. This is the case in numerous data representa
tions, like sound, 3D graphics, sensor data, market trends,
etc. Establishing a connection between the array and the
counter variable allows us to realize that the calculation’s
results stored in the array are somehow close to each other
in the data model. Optimally, these calculation should also
have the form of a locally smooth function, so the accuracy
loses remains acceptable.

This arguments forces us to determine some constraints
to the application of A-Roll to a loop:

1. The loop to be optimize is a counted loop storing com-
putation’s results into an array.

2. Is possible to relate the loop’s counter variable to the
array index.

3. The calculations can be typified as a locally smooth
function.

We implemented a tool to find loops abiding to these con-
strains that can be found in our Github repository 1.

3. IMPLEMENTATION
In this section we describe our experimental implemen-

tation of the proposed optimization in the C2 compiler of
the OpenJDK Hostpot. A-Roll is a machine independent
optimization. In the C2 compiler, all these optimizations
works by reshaping the Ideal Graph, which is the internal
representation (IR) of the C2 compiler. To exemplify our
implementation, we will use a very simple loop:

for (int i = 0; i < N; i++)
A[i] = i * i;

Listing 3: Example loop for the implementation

The Ideal Graph.
The C2’s internal representation (IR) is graph called the

Ideal Graph. All C2’s machine independent optimizations
work by reshaping this graph. A detailed description of the
Ideal Graph (IG) can be found elsewhere [3], we only de-
scribe what is needed to understand our work.

The IG is quite similar to the Program Dependency Graph
(PDG)[4]. It also contains information on both the control
and data flow, Region nodes define basic blocks and instruc-
tions inside the basic blocks have no specific order, only the
one enforced by their data dependencies.

The Model of Computation of the IG works as a Petri net
for Region nodes (i.e. control). Region propagates control
signal into data nodes and other control nodes. Data nodes

1https://github.com/DIVERSIFY-project/
approx-loop-counter

do not propagate control and their execution is supposed to
be instantaneous.

The nodes in the graph represents instructions as closest
as possible to assembler language (i.e. AddI, MulF), with
some exceptions such as control flow nodes (i.e. Region,

CountedLoop) or IO instructions (i.e. LoadI, StoreL)
The CountedLoop is a type of Region node that holds spe-

cial interest for us because it represents the head of counted
loops and contains important metadata for our implemen-
tation (i) the list of instructions in the loop’s body (ii) the
exact instruction that increments the counter variable.

Another specially interesting type of node is Store. Store
nodes represents storages into memory and is possible to
know when an storage is performed onto memory hold by
an array thanks to metadata contained by the node. This
information is saved into the Store node while the C2 parses
the bytecode of the input program.

Figure 2: The ideal graph of the example loop of
listing 3.

Figure 2 represents the IG for the loop of listing 3. There,
the CountedLoop node sends control signal (dashed edges)
to the StoreI node, which takes two inputs: the value to
store in memory and the memory address to store the value
to. The address is resolved by the nodes in the cluster A,
containing the LShift node, while the value is calculated by
the cluster B, including the MulI node.

Relating the array indexed to the loop’s counter vari-
ables.

Our optimization operate only if there is an arrays indexed
by loop counter variable. Therefore we need to (i) detect
an array storage (ii) relate this storage to the loop counter
variable.

The C2 compiler is able to detect loops using an algorithm
by Vick [7] based on the work of Tarjan [6]. When our

https://github.com/DIVERSIFY-project/approx-loop-counter
https://github.com/DIVERSIFY-project/approx-loop-counter

Figure 3: The ideal graph for the unrolled loop of listing 3.

optimization kicks in, the compiler have already recognized
the counted loops, knows the instruction incrementing the
counter loop variable and knows the instructions belonging
to the loop’s body using the work of Click[2].

As the IG contains information on data dependencies, by
construction an Store node writing to an array indexed by
the loop’s counter variable must be connected to the incre-
ment instruction by data edges. Therefore, to find an array
indexed by the counter variable, it suffices to search the
instructions of the counted loop’s body, looking for Store

nodes operating over arrays. When one of such node is
found, we use its address input as starting point to perform
a Depth First Search in the IG, traversing the data edges,
trying to reach the loop’s increment instruction. If we can
reach the instruction, then we have found an array indexed
by the loop counter variable.

Approximating the loop.
Our implementation of A-Roll piggybacks on the Loop

Unrolling optimization provided by the C2 compiler, since
A-Roll takes as input the unrolled loop.

While unrolling, the compiler clones all the instructions
of the loop’s body, creating also clones for all existing Store

nodes. Due to C2’s design, the cloned nodes belongs to the
even iteration of the loop.

Once the loop has become unrolled, A-Roll reshapes the
graph to achieve the interpolated step. To perform near-
est neighborhood interpolation, A-Roll connects the input
value of the odd Store nodes to the input of their respective
clones in the even iteration. The input node of the even
Store are deleted if they becomes dead (i.e. it has no more
nodes using it as input). This deletion process is recursively

performed in all nodes becoming dead as the result of the
first removal.

Figure 3 shows the graph after the loop has been un-
rolled by the C2 compiler. Solid black edges are data edges,
while dashed edges are control edges. The loop had initially
only one array storage: Store-Odd and the unrolling process
added yet another: Store-Even. In the picture, the dotted
edge is the value input to Store-Even which is removed by
A-Roll. The gray edge is added by A-Roll, since the Phi

node was the input to the odd Store. Once the dotted edge
is removed, the nodes with dashed borders becomes dead (
MulI-Even and the AddI) and are eliminated from the graph.

Listing 4 shows the code generated for the loop in the
example without using A-Roll, while listing 5 shows the
code generated for the same loop using our approximate op-
timization. In the example, the compiler has unrolled the
loop twice: notice the four storages to memory. In the non
approximate code, we may find four multiplication instruc-
tions (imull), while in the approximate code we can only find
two.

Indicating that a loop can approximated.
Sidiroglou [5] presented the notion of critical and tunable

loops. Critical loops were those that did not admit any
inexactitude. Every Java application have this kind of loops
(i.e. in the class loaders).

We have incorporated the @Approximated method anno-
tation and modified the C2 so it recognizes this annotation.
Only loops in methods annotated with the @Approximated

annotations are approximated by A-Roll.

B8: #
movl [RCX + #16 + R9 << #2], R8 # int
movl R9, R10 # spill
addl R9, #3 # int
imull R9, R9 # int
movl R8, R10 # spill
incl R8 # int
imull R8, R8 # int
movl [RCX + #20 + R10 << #2], R8 # int
movl RDI , R10 # spill
addl RDI , #2 # int
imull RDI , RDI # int
movl [RCX + #24 + R10 << #2], RDI # int
movl [RCX + #28 + R10 << #2], R9 # int
addl R10 , #4 # int
movl R8, R10 # spill
imull R8, R10 # int
cmpl R10 , R11
jl,s 7

Listing 4: Assembler code generated for the example
loop without using A-Roll

B7: # B8 <- B8 top -of-loop Freq: 986889
movl RBX , R8 # spill
B8: #
movl [R11 + #16 + RBX << #2], RCX # int
movl [R11 + #20 + R8 << #2], RCX # int
movl RBX , R8 # spill
addl RBX , #2 # int
imull RBX , RBX # int
movl [R11 + #24 + R8 << #2], RBX # int
movl [R11 + #28 + R8 << #2], RBX # int
addl R8, #4 # int
movl RCX , R8 # spill
imull RCX , R8 # int
cmpl R8, R9
jl,s B7

Listing 5: Assembler code generated for the example
loop using A-Roll. Notice is a much more shorter
code with only half of the arithmetic operations

4. ROADMAP
In order to effectively implement A-Roll, there are several

challenges to be addressed.

Detect loops that can be approximated using A-Roll .
In this status report, we mentioned some constraints to

the shape of the loops that our approximative optimization
can work on. In our immediate research path lies to incor-
porate the last of these constraints (having a locally smooth
function) into our implementation. The challenge here is
that detecting such form of function is costly. Perhaps a
fast way of determining it is by comparing the differences
in values between two iterations in the loop. If the differ-
ences are too high it would mean the data is not smooth and
therefore cannot be interpolated.

We will also work on determine the domains on which
A-Roll be exploited successfully to obtain good results in
terms of accuracy lost, speed gain and energy savings. At
this point we have obtained good experimental results with
signal processing, but our intuition tell us that the technique
can be applied in other fields as well.

Interpolation’s performance.
Another challenge to be addressed is that the interpolated

iteration must perform always better that the exact one in
terms of speed an energy consumption. Several interpolation
strategies can be used, nearest neighbor, linear, polynomial.

The challenge will be to select one that performs better that
the exact computations and yet produces acceptable results.

Using static analysis we can achieve some estimations that
can be less or more accurate depending on the ability to
determine execution paths. Since we aim at implementing
our optimization in the C2 compiler, we can also have some
runtime information and we must came up with strategies
to get the most out of the data the compiler has to offer.

Evaluation.
Determining whether there is an effective gain in terms of

performance is a challenging task that requires great deal of
care and expertise due to the many sources of non-determinism
that may arise in the CPU, the compiler and operative sys-
tem [1]. The experiments to evaluate our technique would
require a thorough planing and then, the results should be
validated through careful analysis

5. CONCLUSIONS
In this report we have described A-Roll, an approximate

optimization. We enumerate the challenges that must be
tackled in order to effectively achieve this optimization. Fi-
nally, we report our progress to implement the optimization
in the Hotspot JVM.

6. REFERENCES
[1] Aleksey Shipilev. Necessar(il)y Evil dealing with

benchmarks, ugh, July 2013.

[2] C. Click. Global Code Motion/Global Value
Numbering. In Proceedings of the ACM SIGPLAN 1995
Conference on Programming Language Design and
Implementation, PLDI ’95, pages 246–257, New York,
NY, USA, 1995. ACM.

[3] C. Click and M. Paleczny. A Simple Graph-based
Intermediate Representation. In Papers from the 1995
ACM SIGPLAN Workshop on Intermediate
Representations, IR ’95, pages 35–49, New York, NY,
USA, 1995. ACM.

[4] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The
Program Dependence Graph and Its Use in
Optimization. ACM Trans. Program. Lang. Syst.,
9(3):319–349, July 1987.

[5] S. Sidiroglou-Douskos, S. Misailovic, H. Hoffmann, and
M. Rinard. Managing Performance vs. Accuracy
Trade-offs with Loop Perforation. In Proceedings of the
19th ACM SIGSOFT Symposium and the 13th
European Conference on Foundations of Software
Engineering, ESEC/FSE ’11, pages 124–134, New York,
NY, USA, 2011. ACM.

[6] R. Tarjan. Testing flow graph reducibility.

[7] C. A. Vick. SSA-based reduction of operator strength.
Thesis, Rice University, 1994.

	Introduction
	Approximate Unrolling
	Implementation
	Roadmap
	Conclusions
	References

